

From champion to 'fossil of the day' A critical view of the German Energiewende Axpo Nordic Forum

Malmö, 24 October 2017

Dr. Wolfgang Peters, MBA

Managing Director, The Gas Value Chain Company GmbH, Germany Former CEO, RWE Supply & Trading CZ, a.s., Czech Republic

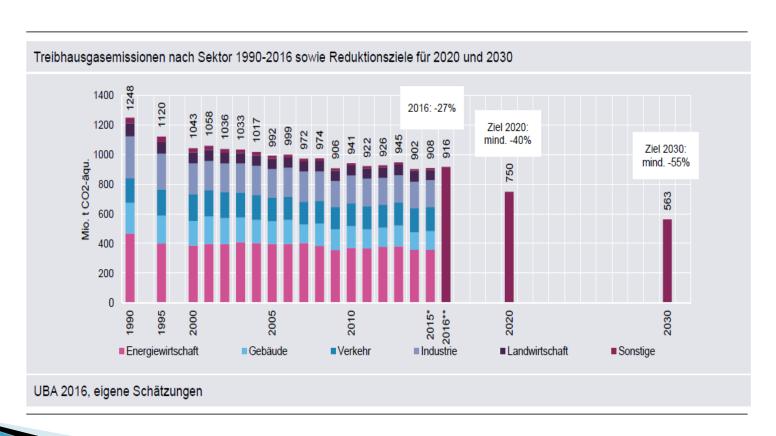
- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

Two amazingly divergent views

GAS VALUE CHAIN COMPANY

Fatih Birol, Berlin Nov. 2016: source of inspiration"

Two amazingly divergent views


COP22 Marrakech November 2016: Germany declared "Fossil of the Day"

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

CO2 emissions 2016 up by 8 million tons 2020 reduction target impossible to meet

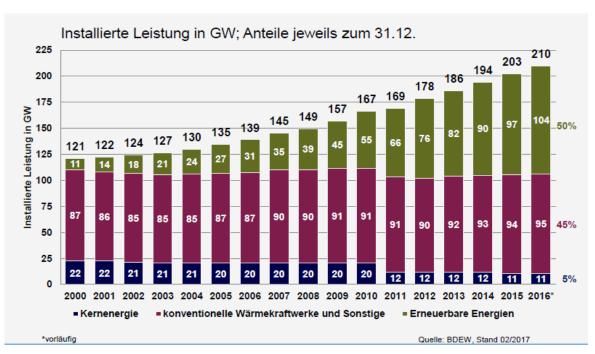
Source: Agora Energiewende 2016

EEG 2000: 20 years must-run priority & guaranteed feed-in tariffs

EEG fallacy: stifling efficiency & innovation

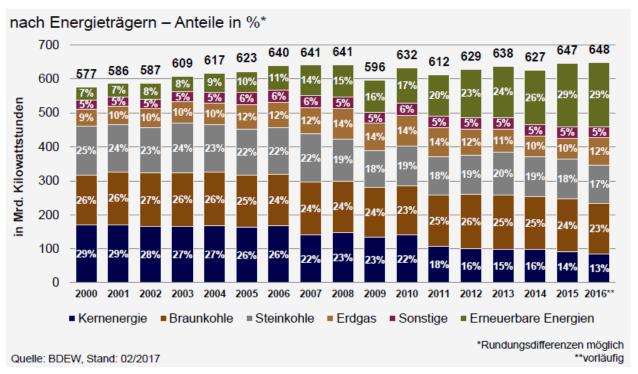
EEG-Umlage 2000: 'cost of an ice cone' ? 2016: € 25 billion

ABBILDUNG 4: EEG-KONTO - KOSTEN UND ERLÖSE


	EEG-Konto					
Ausgaben		Einnahme				
 Zahlung der EEG- EEG-Anlagenbetr 	Einspeisevergütung an eiber	 Einnahmen aus der Vermarktung des Stroms aus EEG-Anlagen an der Strombörse durch die Übertragungsnetzbetreiber 				
 Zahlung der Mark EEG-Anlagenbetr 	t- und Managementprämie an eiber	• <u>Differenz:</u> EEG-Umlage				
		Saldo: 0				
elle: IWR, 2015 ²⁰ .	· c					
Source: DIC	E					

EEG 'subsidy' system caused enormous build-up of RES Generation capacity conventional/RES at par: 106 vs 104 GW

Installierte Erzeugungsleistung in Deutschland seit 2000


Source: BDEW Report 2017, page 9

RES share gross power output 29%: \sim 188 of total 645 TWh RES average load factor \sim 20% = \sim 1,752 load hours

Bruttostromerzeugung seit 2000

Source: BDEW Report 2017, page 9

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

RES 'tunnel vision': blind eye on systemic imperfections

Too much: 'High noon'

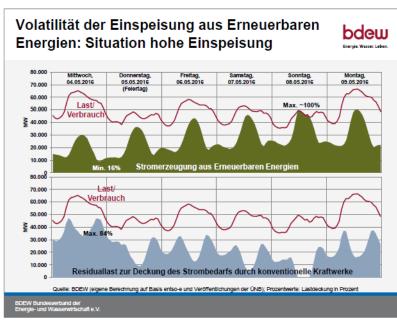


Abb. 13: Deckung des Strombedarfs 04. Mai bis 09. Mai 2016

Curtailment and/or export at negative prices

Too little: <u>'Kalte Dunkelflaute'</u>

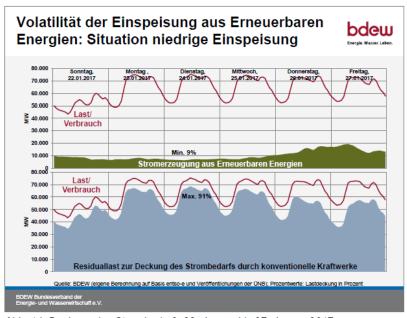
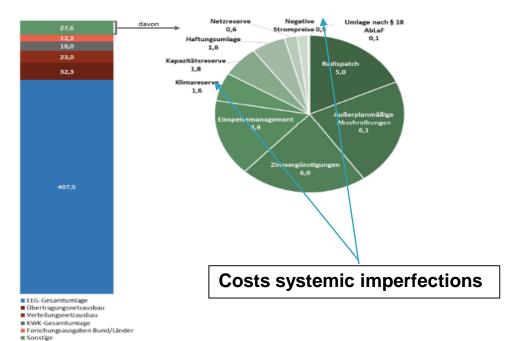


Abb. 14: Deckung des Strombedarfs 22. Januar bis 27. Januar 2017

RESIDUAL LOAD: 100% conventional capacity

Source: BDEW Report 2017, page 14/15

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level



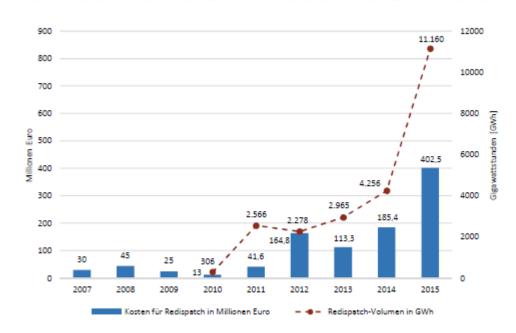
Total costs Energiewende*) 2000 to 2025: ~€ 520 billion Costs from systemic imperfections revealing

*) power only

ABBILDUNG 16: PROGNOSE DER GESAMTKOSTEN DER ENERGIEWENDE (BIS 2025) IN MILLIAR-DEN EURO

Quelle: Eigene Berechnungen.

Source: DICE



Redispatch: TSO 'orders' conventional operators up or down

BNetzA 2016: interventions 329 days/13,339 hours

Quelle: BDEW (2016b), 6 und 9.

Source: DICE

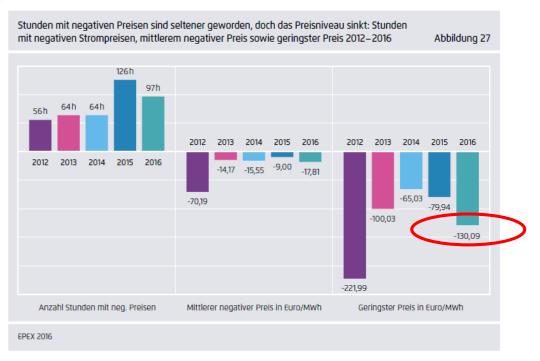
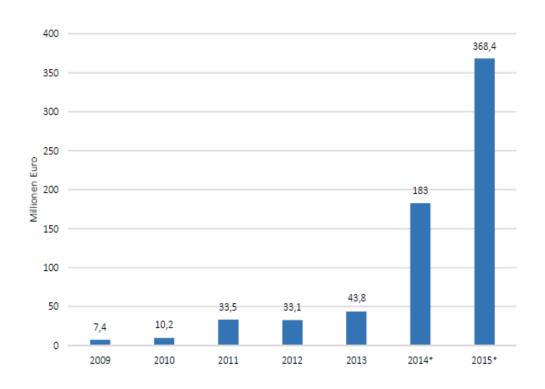

Surplus export at negative prices (gross export 2016 ~80 TWh)

TABELLE 9: ANZAHL DER STUNDEN MIT NEGATIVEN STROMPREISEN SEIT 2008

2008	2009	2010	2011	2012	2013	2014	2015
15	71	12	15	56	64	64	126

Source: DICE

Quelle: Eigene Berechnungen basierend auf Daten von EPEX Spot.



'Einspeisemanagement' (feed-in management): TSO 'orders' curtailment of RES production ('lost volumes')

ABBILDUNG 12: KOSTEN DES EINSPEISEMANAGEMENTS

Quelle: Bundesnetzagentur, 2016, 15f.

Source: DICE

Grid reserve: <u>retired</u> German and active foreign power plants 2016: Capacity 8.4 GW; Molecules 1.2 TWh; Costs € 256 million

Netz- und Systemsicherheitsmaßnahmen der Jahre 2015 bis 2017 (einschl. Reservekraftwerke)

	Redisp	atch		Reservekr	aftwerke		EinsMan		Menge
	Gesamtmenge (Erhöhungen + Reduzierungen) in GWh	Kosten ¹ in Mio. Eu r o	Menge (Erhöhungen) in GWh	Kosten ² Abruf in Mio. Euro	Leistung³ in MW	Vorhalte- kosten ⁴ in Mio. Euro	Menge (Reduzie- rungen) in GWh	Geschätzte Entschädigungs- ansprüche ⁵ in Mio. Euro	Anpassungen von Strom- einspeisung/ -abnahme in GWh
2015	15.436	411,9	551	65,5	7.660	162,3	4.722	478	26,5
Quartal 1	3.329		95				1.135	116,9	8,7
Quartal 2	1.811		53				737	76,6	4,7
Quartal 3	3.336		0				815	82,8	6,2
Quartal 4	6.961		403			_	2.036	201,8	6,6
2016	11.475	218,8	1.209	78,9	8.383	177,4	3.743	373	14,4
Quartal 1	3.895	51,8	695	55,7			1.524	149,1	6,6
Quartal 2	1.939	22,3	146	11,7			534	54,4	2,2
Quartal 3	1.452	27	2	2,1			551	56	0,6
Quartal 4	4.189	117,6	365	[9,4]			1.134	113,2	5
2017					[11.290]	[106]			

Source: : BundesNetzA Report 2016, page 10

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

Energiewende Part 2: 'all-electric sector-coupling'

Massive increase in power & peak capacity demand

Quaschning study: from ~600 to 1,300 TWh Provided all efficiency measures are implemented

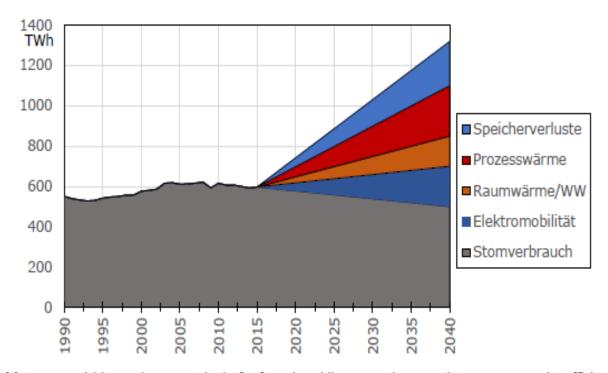


Bild 14 Entwicklung des Strombedarfs für eine klimaneutrale Energieversorgung mit Effizienzmaßnahmen

Source: : Quaschning, Sektorkopplung, page 29

Energiewende Part 2: 'all-electric sector-coupling'

Demand increase by example 1/3rd German passenger cars

Average driving distance: 20,913 Pkm

Consumption BEV 150/300: 0.625 MJ/km = 174 Wh/km

15 million e-cars (1/3rd of total): **54.45 TWh**

Tabelle II-7: Eigenschaften neu zugelassener Pkw-mittel – Entwicklung von 2010 bis 2050


	2010	2020	2030	2040	2050		
Energieverbrauch in MJ/km							
ICEV-B	2,57	1,84	1,50	1,13	1,08		
ICEV-D	2,35	1,80	1,48	1,17	1,08		
PHEV	2,37 / 0,80	1,71 / 0,68	1,59 / 0,64	1,13 / 0,56	1,07 / 0,52		
REEV	2,78 / 0,80	2,00 / 0,67	1,90 / 0,63	1,41 / 0,55	1,33 / 0,51		
BEV 150	0,80	0,67	0,62	0,54	0,50		
BEV 300	0,89	0,73	0,63	0,55	0,51		
ICEV-CH ₄	2,57	1,84	1,50	1,13	1,08		
ICEV-H ₂	1,43	1,19	1,13	0,92	0,80		

Source: : UBA/Öko Institut Verkehr 2016, page 94

Massive increase in peak capacity demand

From 3.7 KW 'wallbox' to 350 KW fast-charging loading stations

Energiewende Part 2: 'all-electric sector-coupling'

Massive increase in peak capacity demand

Baseload capacity (8,760 hours) for 54.45 TWh
Peak capacity for 7,100 fast-charging loading stations at 350 KW

Baseload capacity e-mob			
Demand TWh		Capacity GW	
54.45		6.22	
Additional peak load ski h			
	unit capacity	loading points	Capacity GW
highway fast charging	2.45		
Assumed total capacity:	8.67		

Source: UBA, Own calculations

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

Increased demand: substantial short position RES

Recall: demand from ~600 to 1,300 TWh

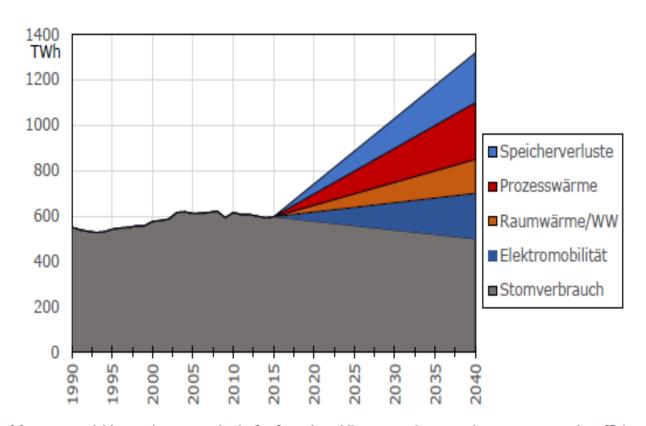


Bild 14 Entwicklung des Strombedarfs für eine klimaneutrale Energieversorgung mit Effizienzmaßnahmen

Source: : Quaschning, Sektorkopplung, page 29

Increased demand: substantial short position RES

RES capacity in 2040 ~doubled from 104 to 187 GW RES output 2040: 460 of 1,300 TWh (optimistic load factor ~28%)

Short position: 840 TWh

Tabelle 12 Entwicklung der regenerativen Stromerzeugung bis 2040 bei dauerhaftem Einhalten der EEG-Zielkorridore aus dem EEG 2014 [EEG14]

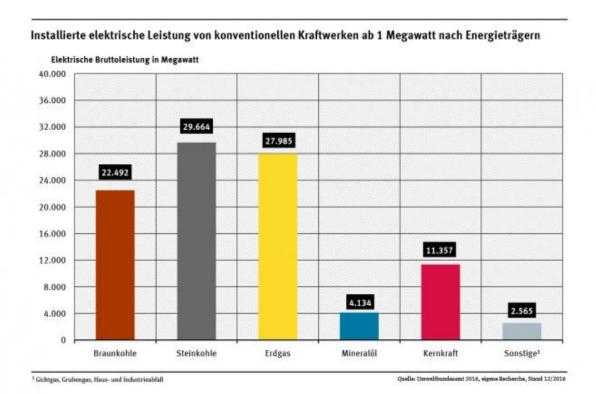
Erzeugung	Jährlicher Ausbau in GW	Installierte Leistung 2040 in GW	Volllaststunden in h/a	Strom- erzeugung 2040 in TWh ²⁾
Photovoltaik	2,5 (brutto)	50	950	48
Windkraft onshore	2,5 (netto)	104	2500	260
Windkraft offshore 1)	0,85 (netto)	24	4500	108
Biomasse	0,1 (brutto)	3	5500	17
Wasserkraft 1)	0,05 (netto)	7	3800	27
Summe	6	187		460 (35 %)

¹⁾ Ausbauziele für Wind-Offshore: 6,5 GW bis 2020 und 15 GW bis 2030, keine Ziele für die Wasserkraft

Source: : Quaschning, Sektorkopplung, page 29

²⁾ durchschnittliche Anlagenlebensdauer 20 Jahre

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level


Avoid rising CO2: cover short position with GAS

GAS required to 'save the day'!

~10 GW nuclear gone in 2020/21

Higher load factors lignite/coal?

~100 GW additional gas capacity: 840 TWh (at 8,400 Lhrs)

Source: https://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/konventionelle-kraftwerke-erneuerbare-energien#textpart-1

Avoid rising CO2: cover short position with GAS GAS required to 'save the day'!

Increase coal: massive <u>increase</u> CO2; Gas: massive <u>reduction</u> CO2 Gas supremacy prevails by far also by 'well-to-grid' standards

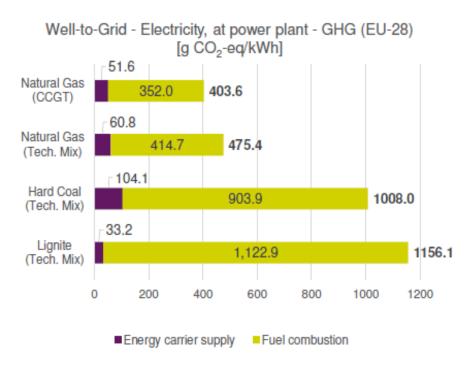
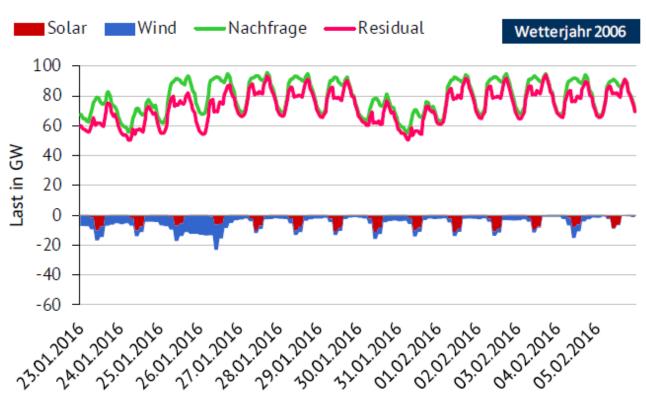


Figure 7-8: Well-to-Electricity – GHG Emissions: Electricity Production Comparison for different Energy Carriers [33]


Source: Thinkstep Natural Gas GHG Intensity Report, page 91

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

'Residual Load' needed for complete wind & solar capacities Weather year 2006 (recurrent) projected on to 2016

Source: Greenpeace/Energy Brainpool, 'Kalte Dunkelflaute', page 5

'Kalte Dunkelflaute': increased residual load requirement

Solar + wind capacity 2040: 178 GW

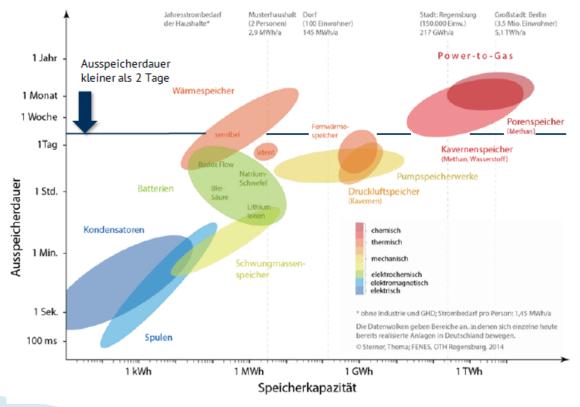
Residual load requirement: 178 GW

Retired coal plants in 'grid reserve'? New GAS capacity!

Tabelle 12 Entwicklung der regenerativen Stromerzeugung bis 2040 bei dauerhaftem Einhalten der EEG-Zielkorridore aus dem EEG 2014 [EEG14]

Erzeugung	Jährlicher Ausbau in GW	Installierte Leistung 2040 in GW	Volllaststunden in h/a	Strom- erzeugung 2040 in TWh ²⁾
Photovoltaik	2,5 (brutto)	50	950	48
Windkraft onshore	2,5 (netto)	104	2500	260
Windkraft offshore 1)	0,85 (netto)	24	4500	108
Biomasse	0,1 (brutto)	3	5500	17
Wasserkraft 1)	0,05 (netto)	7	3800	27
Summe	6	187		460 (35 %)

¹⁾ Ausbauziele für Wind-Offshore: 6,5 GW bis 2020 und 15 GW bis 2030, keine Ziele für die Wasserkraft


Source: : Quaschning, Sektorkopplung, page 29

²⁾ durchschnittliche Anlagenlebensdauer 20 Jahre

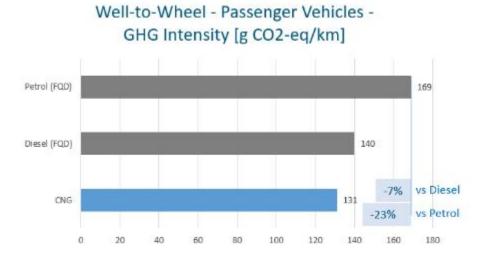
- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

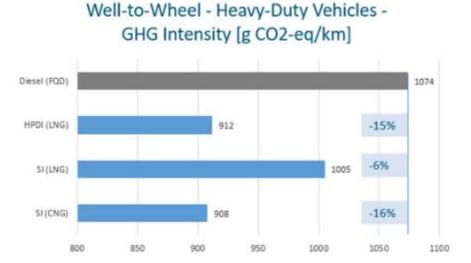
Long-term storage RES production: by PtG

Improve RES 'harvest': GAS GRIDS & Storage to save the day Instead of curtailment / export at negative prices: RES 'storage'! PtG only technology for long-term storage of renewable power 'Gas can green'! Increasing share of hydrogen & synthetic gas.

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

'Energiewende Part 2' reloaded: technology open and direct deployment of gas!




Direct use of gas for transport achieves more than electrification

CNG passenger cars: - 23% CO2 LNG heavy duty vehicles: - 15%

LNG maritime: -21%

Further: high benefits clean air

Source: http://ngvemissionsstudy.eu/

'Energiewende Part 2' reloaded: technology open and direct deployment of gas!

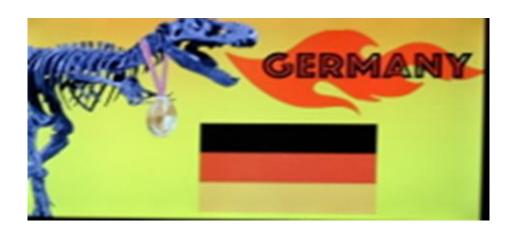
Heat sector: Replace oil by gas, the latter increasingly 'green' CO2 reduction 2050 ~81%

ENTWICKLUNG DER CO2-EMISSIONEN BIS 2050

- Two amazingly divergent views
- Achievement & failure: RES instead of CO2 reductions
- RES 'tunnel vision': blind eye on systemic imperfections
- Centrally planned economy style regime at excessive costs
- 'Energiewende Part 2': 'all-electric sector-coupling'
- Increased demand: substantial short position RES
- Avoid rising CO2: cover short position with GAS
- 'Kalte Dunkelflaute': increased residual load requirement
- Long-term storage RES production: by PtG
- 'Energiewende Part 2' reloaded: technology open and direct deployment of gas!
- Gas Advocacy in 'last man standing' fashion: the next level

Gas advocacy in 'last man standing' fashion

The next level: besides rational arguments, use popularity concerns


Source: Zukunft ERDGAS, Jahresbericht 2016, page 18

For further reading soon to come:

'Energiewende: From Champion to 'Fossil of the Day' Without natural gas to save the day, 'all-electric sector-coupling' will ensure further fossil of the day awards

(www.gasvaluechain.com)

Thank you very much for your attention!